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Abstract

————

Ranking and selection procedures have been developed in modern statistical method-
ology over the past 35 years with fundamental papers pioneered by Bechhofer (1954) and
Gupta (1956). Since then, various modifications and applications have taken place. The
reader is referred to Gupta and Panchapakesan (1979, 1985) for an overview of this research

area. -
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In-the present- aper,.-wo—prow@evnevg some recent developments in the research

area of ranking and selection, mainly, on the following topics: (A) Selecting the largest
normal mean and estimating the selected mean, (B) empirical Bayes selection, (C) selecting
the important regression variables, (D) sequential selection rules, and (E) lower confidence
bounds for the probability of a correct selection. Related theoretic and methodological
research will be surveyed.,Aspects of ongoing research will also be discussed.
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1. Introduction

In many practical situations, the goal of the experimenter is to compare two or more
populations in order to make a decision in the form of a ranking of the populations.
The best studied ranking goal concerns the best population (the most efficient drug for
an ailment, the most effective manufacturing process and so on). The classical tests of
homogeniety were not designed to provide answers to such questions. Rejecting the null
hypothesis is not the final solution to the experimenter’s problem but an exercise that
underlies the need for a reformulation of the problem. Born out of this need is the statistical
theory of ranking and selection procedures.

Ranking and selection problems have been generally formulated using either the indif-
ference zone approach due to Bechhofer (1954) or the subset selection approach of Gupta
(1956, 1965). Starting from the early developments in the 1950’s, these problems have
been extensively studied under various model assumptions and modifications in the rank-
ing goals. A comprehensive survey of these developments is provided in Gupta and Pan-
chapakesan (1979), who have in a later paper (1985) given a review of these and subsequent

developments with historical perspectives.

In the present paper, we review some recent developments in the ranking and selection
theory. We will focus our attention on the following topics: (A) Selecting the largest normal
mean and estimating the selected mean, (B) Empirical Bayes selection, (C) Selecting the
important regression variables, (D) Sequential selection rules, and (E) Lower confidence

bounds for the probability of a correct selection.

3. Finding the Largest Normal Mean and Estimating the Selected Mean

Let xy,...,7x be k(> 2) normal populations with unknown means 6,,...,0; and a
common known variance 2. Let 8);) < ... < O[) denote the ordered #;. The population
associated with 0}y is called the best population. The goal is to select one of the k
populations as the best. Since no procedure assures the selection of the best with certainty,
estimation of the mean of the selected population is of practical interest.
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Let X; denote the sample mean of n; independent observations from »;, 1 = 1,...,k.
The so-called natural selection rule selects as the best the population that yields the
largest X;. When the sample sizes n,,...,n; are all equal, this rule is the uniformly best
permutation invariant selection rule for a general class of loss functions. However, for
unequal sample sizes, the natural selection rule loses much of its optimality (see Gupta
and Miescke (1988)).

A natural estimator of #(y), the selected §;, is X[y, the largest X;. However, Xy
overestimates ;) and thus overestimates (x) even more. Recognizing this, alternative
estimators have been studied for the present and other experimental models and goals by
the following authors: Sarkadi (1967), Dahiya (1974), Cohen and Sackrowitz (1982), Sack-
rowitz and Samuel-Cahn (1984,1986), Jeyaratnam and Panchapakesan (1984,1986,1988),
Vellaisamy and Sharma (1988,1989), Vellaisamy, Kumar and Sharma (1988), and Ven-
ter (1988). Since selection is made first, the preceding estimation problem is known as

estimation after selection.

Cohen and Sackrowitz (1988) presented a decision-theoretic framework for the com-
bined selection-estimation problem, and derived results for the case of kK = 2 and n;, = n;.
Recently, Gupta and Miescke (1990) have extended the results of Cohen and Sackrowitz
(1988) and provided a detailed discussion for normal distributions problem. Rather than
the “estimating after selection,” the decision-theoretic treatment of the combined decision
problem leads to “selecting after estimation.”

We will first discuss the decision—-theoretic approach under a general framework and

then examine the normal means case.

2.1 General Framework

Let X = (X1,...,Xs) be a random vector of observations having pdf f(z|d) =
ﬁ Ji(z:|0:), where z = (z;,...,2:) and @ = (0y,...,0x). Here, X may be a vector of
;;hcient statistics for #;,...,0x. The goal is to select the “population” associated with
0») and to simultaneously estimate 4,, the selected §-value. For this combined problem,
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a nonrandomized decision rule is:

d(z) = (s(z), Luz)(2)) (2.1)

where s(z) € {1,2,...,k} is the selection rule, and ¢;(z) is an estimate for 0;,5 = 1,...,k.

We assume an additive loss function L(§, d) given by
L(e,d) = A(9,s) + B(0,,¢,) (2.2)
where A is the loss incurred in selecting 7, as the best population when @ is the true
parametric vector, and B is the loss of estimating 8, by ¢,.
Adopting the Bayes approach, we assume that © = (6,,...,6;) has a prior distribu-

tion G. Then, for X = z, the posterior risk of d(z) can be expressed as:

r(¢(z)) = ra(s(z)) +ra(s(z), Luz)(2))s (2-3)

where
ra(s(z)) = E{A(8,5(2))|X =z}, and

r5(8(2), La(z)(2)) = E{B(Qs(z), Lo(z)(2))| X = 2}.

The following theorem of Gupta and Miescke (1990) is an extension of a result of
Cohen and Sackrowitz (1988).

Theorem 3.1. Let £;(z) minimize rp(s,4(z)), ¢ = 1,...,k, and let s*(z) minimize
ra(s(z)) + ra(s(z),£;(z)(z)). Then the Bayes decision rule is:

d¢*(z) = (s°(2)s &-(z)(2))-

Remark 2.1. It can be seen that the combined selection—estimation problem is in a sense

“selecting after estimation.”

Corollary 3.1. Whenever at X = z, rp(s,¢;(z)) does not dependons € {1,2,...,k}, s*(z)

minimizes r4(s(z)).

Let sV (z) denote the natural selection rule which selects the population corresponding
to the largest z;. The following example shows that sV is not same as s* in general.
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Example 3.1. Let X; ~ N(4;,1), ¢ =1,...,k, be independent. Assume that ©,...,0;"

are iid having the density exp(—0), # > 0, and consider a loss function given by L(8,d) =
A(0,s) + (8, — ¢,)?, where A is permutation invariant and favors selecting large f-values.
A posteriori, at X = z, ©,,...,0; are independent and the posterior density of ©; is
©o(0; — y:)/®(yi), 8; > 0, where © and ® denote the N(0,1) density and cdf, respectively,
and y; = z; — 1,8 = 1,...,k. Straightforward computations yield, for s = 1,...,k,

£ (z) = E[6i|X = z] = yi + i
ra(i,6;(z)) = Var[8|X =g]

=1+2y,?+l"ﬁ%‘)‘_ [%]2

Thus, although sV (z) minimizes r4(s(z)),s" is different from s*, since rp(s, £ (z)) de-

pendsoni € {1,...,k}.

2.2. Normal Means Problem

Let X; denote the mean of a random sample of size n; from N(0;,0%) population,

1=1,...,k, where the common variance o* is assumed to be known. Apriori, ©,,...,0;

are independent and ©; ~ N(ui,¢i), f = 1,...,k. Thus, given X = z, 6,,...,0; are

ULAM Bl), §=1,...,k Also, the

X’s are marginally independent with X; ~ N(ui,p; + ¢;), where p; = 02 /n;, i =1,... k.

aposteriori independent with 6;|X =z ~ N (

Equal Sample Sizes. Weletn; =... =n;y =n. Wealsoassumethat y) =...=ur=p
and ¢ = ... = ¢qx = ¢, i.e. we have exchangeable normal priors. We assume the loss
function L(9,d) in (2.2) with two possible forms B,(4,,¢,) and B3(9,,¢,) for B(4,,¢,),

. given by

B 0l’tl = 0. —t.
{ Bzgﬂ.,t.; = I(o. - c,l)z, (2.4)

Also, A(4,s) in (2.2) is assumed to be permutation symmetric and favorable to selection
of larger §-values.

Under the above assumptions, Gupta and Miescke (1990) have shown that the Bayes
rule d* = (s*,£;.) satisfies s* = sV and £;(z) = E{€y|X =2z}, i =1,...,k.

Consider the natural decision rule dV = (sV,¢N,), where t¥(z) = z;, s = 1,...,k.
Although, from the frequentist point of view, d¥ has the undesirable feature of overes-




timating the mean of the selected population, it has been shown by Gupta and Miescke
(1990) to be an extended Bayes rule.

Unequal Sample Sizes Case. Here we will consider two particular loss functions,

namely,

{ Ly(8,9) = (0 —8a) + 6, - L], (2.5)

L3(8,d) = (O — 04)* + (0. — L)%,
where ¢ > 0 gives relative weights to the two parts of the loss function. Since the sample
sizes are unequal, it is appropriate to consider non-exchangeable priors, ©; ~ N(u;,¢;), ¢ =

1,...,k. The ©;’s are, of course, independent.

Under the above setup, with loss function Ly, the Bayes rule (by Theorem 2.1) employs
the estimator £;(z) = (giz: + pipss)/(¢i + ps) for 0;, i =1,...,k, and one has to find s*(z).
For any decision rule d = (s,{;), the posterior risk at X = z associated with selection

s(z) =1 € {1,...,k} turns out to be

¢izi + Piﬂi] ( 2pigi ) 3
g+pi 7(gi + pi)
This leads to the Bayes rule d* = (s*,£;), where £;(z) = (gizi+pins)/(gi+pi), s = 1,...,k,

¢ [E{e[knx —z)-

and s*(z) maximizes c£;(z) — [2¢:pi/7(q: + pi)]}, s=1,...,k.
It is interesting to note three special cases, which are as follows.

Case 1: Noninformative prior (¢; — oo, § = 1,...,k). In this case, £}(z) = zi, ¢ =

1,...,k, and s*(z) maximizes z; — c"(2p.-/1r)§, i=1,...,k

Case 3: Prior variances proportional to sample variances (¢; = vp;, t = 1,...,k, for
some v > 0). In this case, £;(z) = (vz: + us)/(v+1), § =1,...,k, and s*(z) maximizes
t(z) — e~ M2yp;/(v + 1)x)%, i = 1,...,k. In particular, for uy = ... = ux = u (say),
t(z) = (vzi+m)/(v+1), § =1,...,k, and s*(z) maximizes z; — ¢~} {2(y + 1)pi/7}3, i =
1,....k.

Case 3: Posterior decreasing in transposition (DT), i.e. ¢;' +p;! = 7=1, i =1,...,k,
for some fixed r > 0. In this case, £;(z) = r(p7 z; + ¢; 'ui), ¢ = 1,...,k, and s*(z)
maximises £(z), § = 1,...,k. In particular, when u; = ... = up = u (say), {(z) =

p“‘r(z.-—u)-i-u, §=1,...,k, and &*(z) maximizses p;'(z; — p), i = 1,...,k.




It has been shown by Gupta and Miescke (1990) that the decision rule of Case 1

(noninformative prior) is an extended Bayes rule.

In the case of loss function L3, the analysis gets more complicated. For finding the
Bayes rule, we have the same £;(z) as in the case of L;, but for finding s*(z) one has to

cE{[Op — 6,2 |1X = z} + —DPi_ 2.6
{(ew — %X =z} P (2.6)

The difficulty lies in the fact that, for any 4, the conditional distribution of (), 8;) at
X = z does not yield simpler representations for the conditional expectation in (2.6),

which in most situations has to be evaluated on a computer.

As in the case of Lj, we can specialize the problem in the three special cases regarding
the assumptions about the prior. In Case 3, the Bayes rule is the same as in the case of

L,.

3. Empirical Bayes Selection Procedures

The empirical Bayes approach in statistical decision theory is typically appropriate
when one is confronted repeatedly and independently with the same decision problem. In
such instances, it is reasonable to formulate the component problem with respect to an
unknown prior distribution on the parameter space. One then uses information borrowed }
from other sources to improve the decision procedure for each component. This approach
is due to Robbins (1956,1964). Empirical Bayes procedures have been derived for multiple
decision problems by Deely (1965). Recently, Gupta and Hsiao (1983), Gupta and Leu
(1983), and Gupta and Liang (1986, 1988a,b, 1989a,b,c) have investigated empirical Bayes
procedures for several selection problems. Many such empirical Bayes procedures have
been shown to be asymptotically optimal in the sense that the component Bayes risk will
converge to the optimal Bayes risk which would have been obtained if the prior distribution
were fully known, and the Bayes procedure with respect to this prior distribution was used.

In this section, we will describe empirical Bayes selection procedures with respect to
a standard. Two kinds of empirical Bayes procedures will be considered. One is to incor-
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porate past data to improve the current decision. The other is to incorporate information
from each other so as to simultaneously improve the decisions for each of the component
problems under study. A Poisson distribution model is used as an example to describe the

empirical Bayes idea and methods.

3.1. Formulation of the Empirical Bayes Selection Problem

Let 7),...,7x denote k independent populations. For each ¢t = 1,...,k, let X; denote
a random observation arising from population x;. It is assumed that X; follows a Poisson

distribution with probability function f;(z|¢;) where

fi(z]6;) = e=%0% /2!, £=0,1,2,...; 6; > 0.

Let 8o > 0 be a known standard. Population «; is said to be good if 8; > 8o, and
bad otherwise. The goal is to select all the good populations and exclude all the bad

populations.

Let @ = {8 = (01,...,0x)|0; > 0, s = 1,...,k} be the parameter space and let
A ={a=(a,...,ax)|la; = 0,1, s =1,...,k} be the action space. When action a is taken,
it means that population #; is selected as a good population if a; = 1, and excluded as a

bad one if a; = 0. For each § € 1 and a € A4, the loss function L(4,a) is defined to be:

k k
L(0,8) = ) ai(60 — 0:)1(o — 6) + (1 - a;)(8: — 80)I(6; — 6o) (3.1)

=1 =1

where I(z) = 1(0) if z > (<)O0.

It is assumed that for each s, the parameter ; is a realization of a random variable
©; which has a prior distribution G;. It is also assumed that ©,,...,0; are mutually
k
independent. Thus © = (©,,...,0;) has a joint prior distribution G(8) = [] G:(6:).

s=1
Foreachs = 1,...,k, let X; be the sample space of X;,and let X = Xy x...x Xs. Let
X = (X1,...,Xx). A selection rule d = (d;,...,ds) is defined to be a mapping from X
into [0,1]* such that d;(z) is the probability of selecting population x; as a good population
when X = z is observed. Let D be the class of all selection rules, and let r(G,d) denote

Lae
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the Bayes risk associated with each d € D. Then, r(G) = Jnf r(G,d) is the minimum
. eD
Bayes risk. )

The Bayes risk associated with any rule d € D can be written as:

k
r(G.d) =) ri(G,di) (3.2)
t=1
where .
ri(G i) = Y 100 — wi(z)ldi(2) [] fil=s) + i, (3.3)
ZEX 1=1

where ;(z;) = E[0;|X; = z;] = hi(zi + 1)/hi(z;) is the posterior mean of ©; given
Xi = zi, hi(z) = fulz)/alzs), fulzs) = [y fi(zi|0)dGi(8) = [, %0 /2,1dG;(0) =
a(z;)hi(z;) is the marginal probability function of the random variable X, and a(z;) =
(z)™2, hi(z:) = [y e~00%dG;(6) and C; = [ (8 — 80)dG;(6).

It follows that a Bayes rule, say dp = (d5,...,dxB), is clearly given by: For each
1=1,...,k,

date)= {3 gz 2 =

k
The minimum Bayes risk is: r(G) = _ (G, d;B).
=
When the prior distribution G is unknown, it is not possible to apply the Bayes rule
dp for the selection problem. In the following, the empirical Bayes approach of Robbins
(1956,1964) is employed. First, we discuss the case where certain past observations from

each of the k populations are available.

3.2. Incorporating Information from Past Observations

According to the usual empirical Bayes framework, it is assumed that for each 1 =
1,...,k, there are marginally iid past random observations X;;,,..., X;, with marginal
probability function f;(z) available when a decision is made. Three empirical Bayes selec-
tion rules are constructed according to how much we know about the prior distribution

G.

|
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3.2.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Thus, a nonpara-
metric empirical Bayes approach is employed. It should be noted that p;(z;) is increasing
in z; for each s = 1,...,k. Therefore the Bayes rule dp is a monotone selection rule. Thus,

it is desirable that the considered empirical Bayes rule be also monotone.

Foreachs=1,...,k,and £=0,1,2,..., define

fin(2) = 771 Y Iay(Xi5)

i=1

hin(z) = fin(z)/a(z).

Let Ni, = max X;; — 1 and for each z =0,1,..., N;,, define
1<5<n
@in(z) = [hin(z + 1) + 6n]/[ht'n(3) + 61;]’

where 6, > 0 is such that §, = o(1).

Since p;n(z) may not be increasing in z, a smoothed version of p;n(z) is given be-
low. Let {i},(z)}Nir, be the isotonic regression of {pin(2)} % with random weights
{Win(z)}Yin,, where W;n(z) = [hin(z) + 6na(z + 1). For y > Nin, let 2, (¥) = ©}n(Nin).
Therefore, @}, (z) is nondecreasing in z. We may use p},(z) to estimate p;(z). Based on
pi.(z), § =1,...,k, an empirical Bayes rule d;, = (d},,...,d;,) is proposed as follows:

nt"’

Foreachi=1,...,k,and z€ X,

. — 1 if o} (I.') 2 0o,
= {3 1) o5
3.2.3. A Parametric Empirical Bayes Rule
It is assumed that the prior distribution G; is the gamma distribution with unknown
shape and scale parameters a; and J;, respectively, s = 1,...,k. That is, G; has a density
function g;(0#|a, 8;), where
gi(0lai, B;) = p0%—eP* |T(a;), 0 > 0.
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Then, Xiy,...,Xin are iid with marginal probability function f;(z) = I'(z + a;)8 /
[T(ai)(1 + B:)*+ 2!, £=10,1,2,.... Also, p;(z) = §L3i. Straightforward computations
yield that ui = E[X] = ai/Bi, pia = E[X}] = ai(es + 1)B7% + aif}. Thus, g; =
pir(piz — pir — pdy) "t and a; = ) (4iz — pia — p3) 1. Therefore, pi(z) = [z(piz — pir —
wd) + wdl(piz — ph)

For each t = 1,...,k, let pi1jn = n~ E Xi; and pign = n! Z . That is, ui1n
5=1
and pi2, are moment estimators of u;; and u3, respectively. Smce it is possible that

Kizn — Biln — p?m = vin < 0 though iz — pi1 — u?l > 0, thus, for each £ = 0, 1,..., define

z"lon"‘l‘
Pin(z) = { I‘nzn—l‘?,,. if Yin > 0, (3.6)
z otherwise.

Then, an empirical Bayes rule é,. = (J;,., vee ,J;,,.) is proposed as follows: For each
t=1,...,k,andz€ X,

@ = {5 oo @)

3.2.3. A Hierarchical Empirical Bayes Rule

Suppose that the prior distribution G; is a gamma distribution with a known shape
parameter a; and an unknown scale parameter #;. In this situation, the preceding para-
metric empirical Bayes approach can be applied here. However, a new method, called

hierarchical empirical Bayes, is introduced in the following.

Since f; is a scale parameter, it is assumed that §; has an improper prior p(48;) =
31._-, Bi > 0. Thus, conditional on Bi, Xii1,...,Xin are iid with the probability func-
tion fi(z|B:) = f:’ fi(z]0)gi(0|ai, B;)do = z—“-.-%s-':%‘_%:,,—,‘, z = 0,1,2,.... Therefore,
Xi1,...,Xin has a joint marginal probability function f:(z;1,...,Zin), Wwhere

f(2ity - ) 2in) = / 1 #:=:518)p(8)d8

i=1

[I‘ ZTii + a;
J=1

21T (@) ]I‘(nai)l‘(b.- — na;)/T(b:)

11




n
where b; = na; + Y z;;. Thus, the posterior density function of §; given (X;,..., Xin) =
i=1
(Zi1y-+-+Zin) 18

p(Bilzit,. .., zin) = Br* (1 + B:) 5T (bi) /[T (nex)T (b; — nax)),
and the posterior mean of §; given (z;1,...,%Zin) i8

n
T if 3z 22,
ﬂin = E[ﬂilxil’“ . )zt"l] = 2 zi;—1 j=1

J=1
oo otherwise.

For each ¢ = 1,...,k, and (z;,...,Zin), define

n
_ Zitay if > 9.
Bin(2i) = { A ! E, % 2 % (3.8)
0 otherwise.

We then propose an empirical Bayes rule dn = (dip,...,dkn) as follows: For each
i=1,...,k,

Fi(z) = {1 Pinlz:) 2 bo;
din(z) {o otherwise. (39)

3.2.4. Asymptotic Optimality

For an empirical Bayes selection rule d,, let r(G,d,) denote the overall Bayes risk.
That is,
k )
r(Gidn) =) [Z (00 — pi(:)] Eunldin(2i)) fi(2i) + Ci

t=1 Lz;=0
where the expectation E;, is taken with respect to (X;i,...,Xin). Since r(G) is the
minimal Bayes risk r(G,dn)—r(G) > O for all n. The nonnegative difference r(G,d.)—r(G)

can be used as a measure of optimality of the empirical Bayes rule d,.

Definition 8.1. Let {ds}22., be a sequence of empirical Bayes rules. {dn}32., is said to be
asymptotically optimal of order r, relative to the prior distribution G if r(G,dn) — r(G) =

0(7a), where {ra}32., is a sequence of positive numbers such that lim 7, =0.

12



Following Gupta and Liang (1989c), it is easy to obtain the following result. Let
Bi(0o) = {zlpi(z) < 6o} and let

l m; = [ maxBi(bo) if Bif6o) # ¢;
-1 otherwise )
] Theorem 3.1. Let d, denote any of the three precedingly constructed empirical Bayes
N selection rules d%,d, and d,. Suppose that f:° 0dGi(0) < co and m; < oo for all 1 =
1,...,k. Then, r(G,dn) — r(G) = O(exp(—cn)) for some positive constant ¢, where the

'r value of ¢ varies depending on the empirical Bayes selection rule used.

3.3. Incorporating Information from Other Components

We now consider the case where it is assumed that the k prior distributions Gy, ..., Gk

are identical, but there is no past observations available. Under this assumption, X;,..., X}

‘t are marginally iid with probability function f(z) = [, ¢~%6%/z!dG(6) where G = G, =
... = Gx. Therefore, we can still incorporate information from each other to improve

the decisions for each of the k component decision problems. The idea is described again

through the nonparametric empirical Bayes, the parametric empirical Bayes and the hier-

archical empirical Bayes approaches.

3.3.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Following the

discussion of Subsection 3.2.1, a nonparametric empirical Bayes selection rule is constructed

as follows.

k
Foreachs =1,...,k,let Ny = mgqcxj—l,md let fa(y) = g2 3 Iy (X5), har(y) =
I+ s=1

o ——

s
fa(y)/aly), v = 0,1,.... Also, let pix(y) = [hir(y + 1) + bk]/[hir(y) + k] for each
y=0,1,..., Nix, where §; > 0 is such that 6 = o(1).

Let {©}) (y)}ffo be the isotonic regression of {(s (y)}l’,’,‘_"o with random weights {W.-,,(y)}’y";_"0 ,
where Wix(y) = [hix(y) + 6aja(y + 1). For y > Nex, let o, (v) = o} (Nix). Now, an em-
pirical Bayes rule d} = (dj,,...,d},) is proposed as follows: For each s = 1,...,k, and

13




(X1,...5Xk) = (1,...,Zk), define

* - 1 if (P?k(z,‘) 2> 0o;
4ik(z) {0 othe‘rwise. (3.10)

3.3.2. A Parametric Empirical Bayes Rule

It is assumed that the prior distribution G is a member of gamma distribution family

with probability density function g(#|a, 3), where
9(6|a, B) = B*0°'e P?/T(a), 0 >0

and both the parameters a and # are unknown. Following the discussion of Subsection
k k

3.2.2, for each ¢ = 1,...,k, let pu(s) = ﬁ-‘- 3 X;, and pug(s) = ;}_—1 3 X}. Let
J=1 F=1

I#d J#é
rik = pak(3) — p1x(5) — s3,(5). Define

¢¢k(zc)={ @ k> 0; (3.11)

pan () -pd, (¢
z; otherwise.

An empirical Bayes rule é}, = (Ju., ven ,Jkk) is proposed as follows: Foreacht=1,...,k
and ' X4,..., Xx) = (z1,...,2zk), define

(e = [ 1 if Pik(zi) > o;
dirlz) = {0 otherwise. (3.12)

3.3.3. A Hierarchical Empirical Bayes Rule

It is assumed that the prior distribution G is a gamma distribution with a known
shape parameter a and an unknown scale parameter . Similar to that of Subsection

3.2.3, a hierarchical empirical Bayes rule Zg = (d—lk, ces ,Ek,.) is constructed as follows.

For given (X,,...,Xk) = (21,...,2x), let

k &
By = {"0/(2 z:'-l) if 302722
Je=1 J=1
00 otherwise.
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For each s =1,...,k, and (X3,...,Xs) = (21,...,Z%), define

Balz) = { (zi+a)/(L+8) if ’_2:31 zj 22 (3.13)
0 otherwise.

Define, for each ¢ = 1,...,k, and (Xy,...,Xs) = (21,...,2&k),
7. _[1 f By(zi) >0
dix(z) {0 otherarise. (3.14)

3.3.4. Asymptotic Optimality

Let dx denote any of the three precedingly constructed empirical Bayes selection rules.

The associated overall Bayes risk (G, dx) is:

k
r(G,de) = Z"(G’ dix),

s=1
where
ri(G,dix) = EaxE;[(00 — vi(Xi))dir(X)]) + C

where the expectation E; is taken with respect to X; and the expectation E;; is taken
with respect to (X1,...,Xi-1, Xi+1,...,Xk). Also, here C = f:(ﬂ — 00)dG(6).

Since r(G) is the minimal Bayes risk, r(G,dx) — r(G) > 0 for all k.
Definition 3.2.

(a) A selection rule d; is said to be weakly asymptotically optimal relative to the prior
distribution G if
[r(G,dr) —r(G)]/k — 0 as k — oo.

(b) A selection rule dj is said to be strongly asymptotically optimal relative to the prior
distribution G if
r(G.dr) - (G) -0 as k — oo.

Note that the strong asymptotic optimality implies the weak asymptotic optimality.
The weak asymptotic optimality of compound decision rules has been studied in the liter-
ature by many authors, notably Vardeman (1978,1980), Gilliland and Hannan (1986), and
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Gilliland, Hannan and Hwang (1976), though the formulation of their compound decision
problems are different from the one described previously. For the present problem, Gupta

and Liang (1989c) obtained the following strong asymptotic optimality.

Let B(8o) = {z|p(z) < o} where p(z) = p1(z) = ... = pi(z) since G; = ... = Gy
and let

m= {ma"B(ao) if B(6o) # ¢,
-1 otherwise.

Theorem 3.3. Let di denote any of the three precedingly constructed empirical Bayes
selection rules d},d; and d. Suppose that Js’ 0dG(6) < oo and m < co. Then, r(G,di) —
r(G) = O(exp(—ck + Ink)) for some positive constant ¢, where the value of ¢ varies

depending on the empirical Bayes rule used.

4. Selection of Variables in Linear Regression

In applying regression analysis in practical situations for prediction purposes such as
economic forecasting or weather prediction, one is faced with a large number of indepen-
dent variables. In such situations, it may well be sufficient to consider only a subset of
these predictor variables for an “adequate” prediction. Thus arises a problem of choosing a
“good” subset of these variables. Hocking (1976) and Thompson (1978a,b) have reviewed
several criteria and techniques that have been used in practice. However, these procedures
are ad hoc in nature and are not designed to control the probability of selecting the im-
portant variables. McCabe and Arvesen (1974) and Arvesen and McCabe (1975) were first
to formulate the problem in the framework of Gupta-type subset selection by considering
models involving all possible subsets of an arbstrarily chosen size. Huang and Panchapake-
san (1982) considered a different formulation taking into consideration all possible reduced
models. Using different criteria for comparing any reduced model with the “true” model,
this problem was also investigated by Hsu and Huang (1982) who used a sequential proce-
dure, and by Gupta, Huang and Chang (1984) who used simultaneous tests of a family of
hypotheses in constructing their procedure. Recently, Gupta and Huang (1988,1989) have
further studied this problem. We discuss their results below.
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Consider the standard linear model
Y=Xf+¢ (4.1)

where Y’ = (Y},...,Y,) is an n—vector of random observations, X = [1,Xy,...,X,_i]
is an n X p matrix of known constants, §' = (fo,51,...,8p-1) is a p-vector of unknown
parameters, and € ~ N(0, a’I,.). Here 1 is a column vector of 1’s and I, is an n x n identity
matrix. The model (4.1) with p—1 independent variables is considered as the “true” model.
Any reduced model whose “X matrix” has r columns is obtained by retaining any r — 1
of the p — 1 independent variables X, X3,...,X,_;, where 2 < r < p. For each r, there
are k, = (PZ}) such models, which are indexed arbitrarily ¢ = 1,...,k,. A typical model
from this group will be referred to as M,;, which can be written as

E(Y) = Xuifi (4.2)

where X,; and 3, are obtained from X and 3, respectively, corresponding to the variables
that are retained in the model. In our discussion, all ezpectations and probabilities are
calculated under the true model (4.1).

Let SS,; denote the residual sum of squares for the reduced model M,;,1 << k,, 2 <
r < p. Then
SS"'/Ug ~ xz{l/,,l,-.'} (4.3)

where v, = n — r is the degrees of freedom and ), is the noncentrality parameter. This
gives

E(SSyi) = vp03 + 203 Ars. (4.4)

Since 0 is fixed, it is clear from (4.4) that ),; should not be latge for a good model. This
motivates the criterion employed by Gupta and Huang (1988), namely, any reduced model
M, with the associated noncentrality parameter ), is defined to be inferior if A,; > A,
where A > 0 is a specified constant. The goal is to eliminate all inferior models from the
set of 27! — 1 regression models including the true model. For this goal, Gupta and Huang
(1988) proposed and studied a two-stage procedure. In the first stage, inferior models are
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eliminated. Then, in the second stage, one of the models from the retained set (if it has
more than one) is selected.

Consider, as an estimator of A,

(4.5)

where R? and R3?; are the multiple correlation coefficients of the models (4.1) and (4.2),

respectively. Define, for n — p > 2,

 (

fi=2 —-f—;z[zi,.- +(p—r)] - (2p - 3r). (4.6)

n

Gupta and Huang (1988) have shown that I',; is an unbiased estimator of I',; = ﬂ%‘:’-ﬂﬂ -
(n — 2r), which is the standardized total squared error.

The two-stage procedure R, of Gupta and Huang (1988) is as follows:
Rs: At stage 1, eliminate all models M,; for which

X,,- >d, (4.7)

and at stage 2, select from all the models that are retained after stage 1 the one with the
smallest I',;. The constant d, in (4.7) is chosen to satisfy

D,=[(d,+%)n—f—;—1]::f (4.8)

where D, is the 100(1 — P*) percent point of the noncentral F distribution with p —r and
n — p degrees of freedom and noncentrality parameter A. It can be shown that, for the
rule R,,

P{all inferior models M,; are eliminated} > P*.

Several authors have studied the influence on the fitted regression line when a part of
the data is deleted. In the model (4.1), let 3 denote the usual least squares estimator of §
based on the full data and let 34 be the least squares estimator based on a subset of the
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data. An empirical influence function for Bis IF, = BA - B For a given positive definite
matrix M and a nonsero scale factor ¢, Cook and Weisberg (1980) defined a distance
Da(M,c) between 2 and 84 given by:

DA(M,C) =

(IFA)M(IF,)

where M can be chosen to reflect specific interests. Recently, Gupta and Huang (1989)
have integrated this concept of influential data with their procedure for selecting important
independent variables discussed previously. They have considered deleting one observation
at a time from the data set Y. Recalling that M;; denotes a reduced model obtained by
retaining r — 1 of the p — 1 independent variables, let M, () denote the model obtained
from M,; by deleting the £-th observation in Y. Corresponding to A,; in (4.3) associated
with the model M,;, we have the noncentrality parameter A.;(¢) associated with the model
M,i(¢). Analogous to A of (4.5) for the model M,;, we define, in the case of M,,(y),

n—p—1 S84 n-r-1
i(e) = - . 4.9
xﬂ(l) 2 Sspl(t) 2 (4.9)
We can find a constant d,. such that
».-.:'f,fza P{ig 24} = P". (4.10)

The new two-stage procedure R, of Gupta and Huang (1989) is defined exactly as their

earlier procedure R, except that, in stage 1, a model M, is eliminated if
"n'(l) > d, for some £ for which X,l(t) < d;, (4.11)

instead of (4.7).

5. Sequential Selection Procedures

A substantial amount of original research on sequential selection procedures accom-
plished during the early years of the ranking and selection theory was published as a
monograph by Bechhofer, Kiefer and Sobel (1968). These and subsequent developments
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have been discussed in Gupta and Panchapakesan (1979), who have recently (1990) re-
viewed further developments in the sequential selection theory. In our present discussion,

we will confine our attention to a few specific recent results.

5.1. A Subset Selection Procedure with a New Goal

Let 7y,...,m; be k independent normal populations with unknown means 8,,...,0x,
respectively, and a common known variance o%. For a specified §* > 0, any population
n; for which 6; > 1?,‘2‘& @; — 6° is defined to be a good population. Gupta and Liang
(1988c) considered the goal of selecting a subset of the k populations which sneludes the
best population (the one associated with the largest 8;) and at the same time ezcludes all
that are not good. An event of selecting a subset consistent with this goal is denoted by

CS(6*). This is different from what is known as §*—correct selection in the literature.

Let X;;,X;2,... be a sequence of independent observations from =;, ¢+ = 1,...,k.
m

For m > 1, define Y;,m = Y X;;. Let Sy denote the set of contending populations at
i=t

the beginning of stage m and let |S;| denote the size of S,,. Gupta and Liang (1988c)

proposed and studied the following procedure.

Rn.cL: Choose a 6, in (0,6°/2). At stage m(m = 1,2,...), take one observation
from each population in Sy,. Include in S+, only those 7;’s in Sy, for which

mé? < k-1
4 08l—p‘

6—2‘(}’".. — Yim) - for all x, € Sm, r #1,

and elsminate all other x;’s from any further consideration. Now, label as good only those

7’8 in Sym41 that have not been labeled yet and for which

b + 6 m(6°? — 6} k-1 '
12 ( y 1)Zlogl_p‘forallwiesm+l,t¢’-

(Yim — Yim) +

Stop sampling if either |Sp4+1| = 1 or Spm41 does not contain any unlabeled population,
and make the terminal decision: “Select all populations in Sp, 41", otherwise, go to stage
m+ 1.

It should be noted that a population is not labeled until and unless it qualifies to be
called good. Any population, once labeled, is not examined for labeling again. However,




it is possible that a labeled population is eliminated subsequently. The populations that
are selected by the terminal decision are precisely those which have been found good at
some stage and which have survived elimination. The choice of &, in (0,5*/2) assures that
the sequential procedure terminates with probability one. The procedure guarantees a
minimum probability P* for selecting a subset consistent with the goal. An optimal choice

of 6;, however, is an open question.

Finally, it should be pointed out that Gupta and Liang (1988c) have discussed the

procedure more generally for location and scale parameter families.

5.2. Selection Procedures for the Exponential Family

Gupta and Miescke (1984) studied sequential selection for exponential family under
a decision-theoretic framework. Their treatment includes multi-stage selection and their

results relate to selection of subsets of random as well as fixed sizes.

Consider the one-parameter exponential family ¥ given by
F = {¢(0) exp(8z)h(z), z € R}sco

where © C R is an interval. We consider the class of permutation invariant sequential pro-
cedures with or without elimination, employing vector-at—a—time sampling, which means
that a vector of observations (one from each) is taken from the non-eliminated popula-
tions. Let X;j, Xja,... be a sequence of observations from x; (with associated parameter
0;). At stage m(m=1,2,. ), let n,, observations be taken from eligible populations. Let
Wim = zf Xij, where Ny = E n;, be a sufficient statistic for 8;, based on all observations
from xg1t=hlrough stage m, méT;t Wm=(Wims.--,Wim), m=1,2,....

Let tj, y = 1,...,m, denote the subset of {xy,...,7x} that is eliminated at stage
J, and ¢4 denote the subset finally selected at termination. This yields a partition
{t1,.. s tmytms1} of {71,..., 73} which will be called a record. For § = (0,,...,0x) €0 =
©*% Ln(0;t1,...,tm,tm+1) denotes the loss incurred when the procedure stops at stage

m with the record {t1,...,tm,tm+1}. It is assumed that (a) L,, is permutation invariant,
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and (b) L, increases if a record is changed so that a better population is eliminated before

an inferior one.

A natural terminal decision, at stage m, selects only those populations among the
noneliminated ones which yielded the largest values of W;,». Gupta and Miescke (1984)
have shown that between two procedures which differ only in their terminal decisions, the

procedure that employs a natural terminal decision rule has a smaller risk.

One can naturally speculate that, within stages where a procedure with elimination
does not stop, natural subset selections are optimal as in the case of terminal decisions.
This has been shown to be true by Gupta and Miescke (1984) only in the case of multi-stage
procedures with sizes of the subsets selected at each stage fixed, under the assumption that
¥ is strongly unimodal (i.e. exponential density is logconcave). For additional comments,
see Miescke (1984).

For the exponential family, Liang (1988) considered the goal of selecting the best
population and excluding all that are not good (same goal as that of Ry.c; discussed
in Section 5.1). His sequential procedure with elimination is based on certain conditional

likelihood functions and it achieves the P*-requirement for CS(6*).

5.3. Other Developments

There are other recent developmentg concerning, among other things, truncated ver-
sions of earlier open sequential procedures, improvements in Paulson’s (1964) procedure,
and two-factor model with no interaction. For a discussion of these and other develop-
ments, see Gupta and Panchapakesan (1990).

6. Lower Confildence Bounds for the Probability of a Correct Selection

Let X;j,5 = 1,...,n, be a sample of size n from a population x;, where my,...,m
are independently distributed with continuous distribution function G(z — 8;), 1 < ¢ <
k. Let 0[” <...< ’(ﬁl denote the ordered §;. The population associated with Oy is
called the best population. Assume that the experimenter is interested in the selection
of the best population. For this purpose, an appropriate statistic Y; = Y (Xi,...,Xin)
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with cumulative distribution function F,(y — 6;) is chosen, and the natural selection rule

that selects the population yielding the largest Y; as the best population is applied. Let
CS (correct selection) denote the event that the best population is selected. Then, the
probability of a correct selection (PCS) applying the natural selection rule is: For § =
(01’”-10k)1

oo k=1

Pics} = [ T Faly+ o~ 0a)dFale). (6)

0 =1
To guarantee the PCS, Bechhofer (1954) introduced the indifference zone approach in
which the experimenter is asked to assign a positive value 6 such that Oy — Ox_1) > 6*.
However, in a real situation, it may be hard to assign the value of §* such that 8} —0x_y) >
6*, since the parameter values 0;,...,0; are unknown. So that if the above assumption is
not satisfied, the PCS cannot be guaranteed to be at least equal to the prespecified level.
Parnes and Srinivasan (1986) have pointed out certain inconsistencies in the indifference
zone formulation of certain selection problems. Also, see Fabian (1962) and Hsu (1981)
for some possible ways to be out of this impasse.

Retrospective analyses regarding the PCS have been studied by several authors. Olkin,
Sobel and Tong (1976,1982) have presented estimators of the PCS. Faltin and McCulloch
(1983) have studied the small-sample properties of the Olkin-Sobel-Tong estimators for

= 2 case. Bofinger (1985) has discussed the nonexistence of consistent estimators of
the PCS. Gutmann and Maymin (1987) have presented a procedure to test whether the
selected population is the best. Anderson, Bishop and Dudewicz (1977) have given a lower
confidence bound on the PCS in normal distribution models.

In the following, we will review some recent developments regarding the construction
of lower confidence bounds for the PCS.

6.1. A Lower Confidence Bound on PCS for Distributions with MLR Property

In (6.1), replace &5 — 0j;) by Ojx) — 6jx_1) for each i = 1,...,k — 2. Then, one can
obtain an inequality
[- -}
Py(o8} 2 [ 1Fuly+ O - O] a0, (62)
- —oco
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Kim (1986) proposed a method to find a conservative lower confidence bound on the
PCS by first finding a lower confidence bound on 8y — 0}x_,).

Let H(t) be the distribution of (Y; — ;) — (Y3 — 63). That s,

H(z) = /_ : Falz + y)dFa(y). (6.3)

The distribution H(z) is independent of the parameters ¢, and 0;, and H(z) is symmetric
about the point 0. For 0 < a < 1, let t,/3 be the upper a/2-quantile of the distribution
H(z). By the symmetric property of H(z), ta/3 > 0. For this fixed «, define a nonnegative
function Lq(t) on [0, 00) implicitly by

H(La(t) —t)+ H(-La(t) - t) = a for t2>ty; (6.4)

and let La(t) = 0if 0 <t < ty/3. Let ¥y < ... < Y|x) denote the ordered statistics
of Y1,...,Yk. Also, let f, be the associated pdf of the distribution function F,. Finally,
define '

Py = / :an(v + La(Yjx) — Yjr-1)))]* " dFan (). (6.5)

Theorem 6.1 (Kim (1986)). Assume that log fa(y) is concave. Then,
i{;ng{‘[k] —Ok-1) > La(Yj) — Yik-1))} = 1 — o,

and hence,

Py{Py{CS} > P} > 1 - afor all 4.

" 6.1.1. Normal Populations with a Common Variance

Let X;;,j = 1,...,n, be a sample of size n from N(0;,03), ¢ = 1,...,k, where the
common variance 02 may be either known or unknown. The best population is the one
associated with ;. Let ¥; = 1 3° X, be the sample mean for each i = 1,...,k. The
natural selection rule selects the p’:l:ulation yielding the largest sample mean value Y], as
the best population. The PCS is:

Py(CS} = /_ : :i:]:o (z + ﬂlﬁl’—'lﬂl) do(z),
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where &(-) is the standard normal distribution.

When the common variance o2 is known, for 0 < a < 1, the function L, (t) is implicitly
defined such that

O(La(t) —t) + ®(—La(t) -t)=a for t> 2q/3,

and Lq(t) = 0 for 0 < t < z,/2, where z,/3 is the upper a/2—quantile of &(-). Kim (1986)
obtained a lower confidence bound for the PCS which is given as follows:

o o e ()

and Py{Pg{CS} > Pr} > 1 - a for all 4.

k n
When the common variance o2 is unknown, let S = 1 3~ Y (X;; — Y;)2, where
1=1j5=1

v = k(n — 1). Note that %53 has a x3-distribution with v degrees of freedom. Let Q,
denote the distribution of S/0. For given 0 < a < 1, let L} (t) be the function implicitly
defined by

/ooo[Q(L; (t) — tu) + &(—L(t) — tu)]dQ,(uv) = a for t>ta2(v)

and L}(t) = 0 for 0 < t < tq/3(v), where to/3(v) is the upper a/2-quantile of the ¢-
distribution with v degrees of freedom. Kim (1986) obtained a lower confidence bound for
the PCS as follows:

P. = /_ : [0 (z +V2L, (‘/'-'(yl"l\/gsy"““)))]k—l d¥(z),

and Py{Py{CS} > P{} > 1 —afor all 8.

The table used to implement the procedures has been tabulated by Kim (1986) for

a = 0.5 and 0.1 for some v values.

6.1.3. Two—Parameter Exponential Populations

Let X;j,j = 1,...,n, be a sample of size n from a two-parameter exponential dis-
tribution with pdf g(z}8;, 8) = B~ exp(—(z — :)/8)1(0;,00)(%), ¥ = 1,...,k, where the
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common scale parameter § > 0 may be either known or unknown. The best population
is the one associated with Ox). Let ¥; = min(X;1,...,Xin), ¢ = 1,...,k. The natural
selection rule selects the population yielding Y[x] as the best population. The PCS is:

oo k-1

Pyp{cst= | I [1-exp(~(v +n(Opy - 80)/8))] e ¥dy.

¥v=0,-)

Let H(t) be the distribution function of ﬂhp_-ﬂ.). - 5-(!35;83)-. Then,

1-1et ift>o0;
H(t) = 2 =
®) {%c‘ ift <O.

When the common scale parameter 3 is known, for 0 < a < 1, let t,/, denote the

upper a/2-quantile of H(t). Then, the function L4(t) is implicitly defined by
H(La(t) —t) + H(—La(t) —t) = afort > t,/,
and Lo(t) =0for 0 <t < tq/2.

Gupta, Leu and Liang (1990) obtained a lower confidence bound for the PCS as

follows:

Bu= [ 1= exply - La(nl¥in ~ ¥ina)/BDI* e Vdy,
y=0

and Pp{Pp{CS} > PL}>1—aforall §.

k n
When the common scale parameter 3 is unknown, let S =1 ¥~ Y (Xi; - Y4), where
i=1y=1
v = k(n—1). Then ’%5 has a I'(¢,1) distribution. Let @, (-) denote the distribution of

S/B. For 0 < a < 1, let ¢, ; be the point such that et H(-t;/5v)dQu(y) = a/2. The
function L} (t) is then implicitly defined by

/o (L) - 1) + H(-Lo() —y)ldQuly) =@ for 3¢5,
and L (t) =0for 0 <t <t 5.

Gupta, Leu and Liang (1990) obtained the following lower confidence bound for the
PCS:

P = [ 11~ exp(-y ~ L3V - Vi) SN e
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and Pp{Pyp{CS} > P;} > 1 — a for all §.

The table used to implement the procedures has been tabulated by Gupta, Leu and
Liang (1990) for a = 0.05 and 0.1 for some v values.

6.2. Lower Confidence Bounds on the PCS for General Location—Parameter
Models

Gupta and Liang (1987) have constructed lower confidence bounds on the PCS for
general location—-parameter models, where the sample size n is determined according to
the indifference zone formulation of Bechhofer (1954). Note that

i = ® k-1
Qe'g(f,., Fe{cCS} = /_ Py +é ¥~ dFu(v), (6.6)

where 12(6*) = {0]0(x) — Ojx—1) > 6"} is called the preference zone. Suppose that the right-
hand-side of (6.6) is an increasing function of n, and tends to one as n tends to infinity.

For a given probability level P*(k~! < P* < 1), let
[+ ]
no = ng(6*, P*) = min {n:/ [Fa(y +6*)]* " 'dFa(y) > P‘} . (6.7)
)

That is, no is the minimum common sample size so that the PCS will be guaranteed at

least to be P* when the natural selection rule is applied and 4 € 1(6*).
Let Y};) < ... < Y}x) denote the ordered statistics of Y3,...,Yx. For given 0 < a <1,

let ¢(k,no, @) be the value such that

@ ti-00- g0 -0) Selhnocd} =1-a  (69)

Note that the value of ¢(k,no, a) is independent of §. Define

bu. = (Yjn) = Yy - ¢(k,no, ), (6.9)
where y* = max(0,y), and
oo k=1
Pu= [ I Fatw + br)dFati). (6.10)
—00 jm1
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Gupta and Liang (1987) proposed P, as an estimator of a lower bound of the PCS,

and obtained the following result.

Theorem 6.2 (Gupta and Liang (1987)).
Py{Ox) — 0y 2 8, foralli=1,...,k—1} > 1~ a for all g,

and therefore,

Py{Py{CS} > P} > 1 — afor all §.

6.2.1. Normal Population with a Common Variance

Consider k normal populations N (0.-,07),:' =1,...,k, with unknown means 4,,...,0;

and common variance o2, where o? may be either known or unknown.

no
When the common variance o2 is known, let Y; = 1 Xii, where X;1,...,Xin, is
ne A J o

J=
a sample of size no from N (0;,02?) and ng is determined, for the indifference zone function,

by
no = min {n:[-: [Q (::+ \/’Zs.)]k—ldd’(z) > P‘}

where both §*(> 0) and P*(k~! < P* < 1) are prespecified by the experimenter. The

PCS applying the natural selection rule is

Pg{CS} = /_ : kffo (z + ‘/'75(0”;’ - ”"")) d®(z).

t=1

For given 0 < a < 1, choose the value ¢(k,no, @) such that

PQ {Ilg‘asxk(}’. -6;) - 1xsnjn.réxk(l’,- -0;) < c(k,no,a)} =1-a.

Note that here, ¢(k,no,a) = Pk 00r Where g o is the 100(1 — a)%th percentile of
Tukey’s studentized range statistic with parameter (k,c0). The value of ¢f ,, is available
from Harter (1965). Define

b1, = (Yju) ~ Y}y — c(k,no, @))*

and




oo k-1
By = / 1K (z + "zs"‘) do(z).

1=1

Then, by Theorem 6.2, Pp{Pp{CS} > Pr} >1—-aforall 0.

When the common variance o? is unknown, Bechhofer, Dunnett and Sobel (1954)

presented a two—stage selection rule given as follows.

Take a sample of size no(no > 2) observations from each of the k populations.

no . k No
Compute Y;(no) = -nl; z:lX.-,-, t=1,...,k, and §% = -}; Y Y (Xi; — Yi(ro)), where
j= t=1j5=1

v = k(no — 1). Define N = max {no, [%’:’33] }, where [y] is the smallest integer not less
than y, and h is a positive value such that

©0 o0
/ / (8(z + wh)]*~1d®(z)dFw (w) = P*
0 —00
where Fiy(-) is the distribution function of the nonnegative random variable W with vW?2

following a x2(v)-distribution.

Then, take N — ny observations from each of the k populations. Compute the overall

N
sample mean Y;(N) = & 3 Xy, s = 1,...,k. The natural selection rule selects the
i=

population yielding the largest sample mean value Yj;)(N) as the best population.

For this two-stage selection rule,

oo poo k-1 Vw
PQ{CS} > /0 H ® (z + -,iaﬂ;—gm)—) d®(z)dFw(w).

=00 {1

Let c = Sqg, / v'N, where g%, is the 100(1 — a)%th percentile of Tukey’s studentized
range statistic with parameters (k,v). Define §;, = (Y (N) - Y (N) —c)*. Let

A oo foo K4 hép,w
QL= /o /_w 11 ® (z+ - ) d®(z)dFw (w).

Gupta and Liang (1987) obtained the following lower confidence bound on the PCS:

Py{0p) — 0y 2 8y, foralli=1,...,k~1} > 1-aforall g,

and therefore,
Pg{Py{CS} 2 Qr} > 1~ afor all §.
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